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A two-dimensional numerical large-eddy simulation of a temporal mixing layer 
submitted to a white-noise perturbation is performed. It is shown that the first 
pairing of vortices having the same sign is responsible for the formation of a 
continuous spatial longitudinal energy spectrum of slope between k4 and k-3. After 
two successive pairings this spectral range extends to more than 1 decade. The 
vorticity thickness, averaged over several calculations differing by the initial white- 
noise realization, is shown to grow linearly, and eventually saturates. This saturation 
is associated with the finite size of the computational domain. 

We then examine the predictability of the mixing layer, considering the growth of 
decorrelation between pairs of flows differing slightly a t  the first roll-up. The inverse 
cascade of error through the kinetic energy spectrum is displayed. The error rate is 
shown to grow exponentially, and saturates together with the levelling-off of the 
vorticity thickness growth. Extrapolation of these results leads to the conclusion 
that, in an infinite domain, the two fields would become completely decorrelated. It 
turns out that the two-dimensional mixing layer is an example of flow that is 
unpredictable and possesses a broadband kinetic energy spectrum, though composed 
mainly of spatially coherent structures. 

It is finally shown how this two-dimensional predictability analysis can be 
associated with the growth of a particular spanwise perturbation developing on a 
Kelvin-Helmholtz billow: this is done in the framework of a one-mode spectral 
truncation in the spanwise direction. Within this analogy, the loss of two-dimensional 
predictability would correspond to a return to three-dimensionality and a loss of 
coherence. We indicate also how a new coherent structure could then be recreated, 
using an eddy-viscosity assumption and the linear instability of the mean inflexional 
shear. 

1. Introduction 
The mixing layer between two flows of velocities U, and U, has been extensively 

investigated experimentally over the last 15 years : in particular Brown & Roshko 
(1974) showed the persistence far downstream of large structures (usually called 
‘coherent ’) upon which small-scale three-dimensional turbulence is superposed, and 
Winant & Browand (1974) observed the pairing of these structures. An extensive 
review of the subject has been given by Ho & Huerre (1984). Mixing layers are 
encountered in aerodynamics, in the atmosphere or the ocean (e.g. in the wake of 
mountains, in the Gulf Stream or in the Mediterranean sea), as well as in the 
atmospheres of Jupiter and Saturn (at the interface between neighbouring zonal 
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jets). Such a flow permits the study of transition to turbulence far from boundaries. 
The concept of coherence applied to the large structures is somewhat controversial 
(see c.g. Wood & Bradshaw 1982). Othcr important questions are thc relevance of the 
two-dimensional Navier-Stokes or Euler equations to describe properly the large 
quasi-two-dimcnsional scales, and how the latter interact with small-scale three- 
dimensional turbulence. In  this paper, we shall examine the dynamics of the large 
scales of the mixing layer from the point of view of two-dimensional turbulence and 
of predictability theory, using numerical simulations. 

In $ 2, numericd large-eddy simulations of the two-dimensional Navier-Stokes 
equations applied to the temporal mixing layer are presented; this type of 
calculation is not new (except for the higher spatial resolution employed here) and 
follows the work of Zabusky & Deem (1971),  CouEt & Leonard (1980), Riley & 
Metcalfe (1980), Aref & Siggia (1980), Chin, Reynolds & Ferziger (1981) and Corcos 
& Sherman (1984). In the present work, we introduce to the initial condition a small 
white-noise perturbation, in order to model (in a very rough way of course) the 
residual turbulence existing upstream in the unperturbed mixing-layer experiments. 
We shall focus on the longitudinal spatial spectral statistics of the flow associated 
with events occurring in the layer (i.e. growth of fundamental eddies and pairings). 
The latter are visualized by computer pictures displaying the vorticity field. We shall 
also compare these statistics with the predictions for homogeneous isotropic two- 
dimensional turbulence, and discuss the possibility for the mixing-layer coherent 
structures to be considered as a special case of two-dimensional turbulence. 

In $3,  we analyse the predictability of the mixing layer, looking at the growth of 
decorrelation between two flows differing initially by the white-noise perturbation 
only. 

In $4, it is shown how a spanwise one-mode truncation of the three-dimensional 
mixing layer, consisting of a two-dimensional basic flow on which is superposed a 
sine-wave perturbation in the spanwise direction, is equivalent to the two- 
dimensional predictability problem. We discuss also possible mechanisms of 
destruction and recreation of the coherent structures, using both the former 
unpredictability results as well as linear instability arguments. 

2. Two-dimensional large-eddy simulations 
2.1. Equations and numerical model 

Consider a two-dimensional incompressible flow with a stream function $(x, y, t )  
satisfying the two-dimensional Navier-Stokes equation 

where J ( A , B )  is the Jacobian operator (aA/ax) (aB/dy)- (i3Alay) (aB/ax), and x, y, 
and z are respectively the streamwise, transverse and spanwise directions. Since we 
are mainly interested in a simulation of the large scales, the molecular viscous 
dissipative operator on the right-hand side of (2.1) will be replaced by a subgrid-scale 
dissipative term - v ~ ( V ~ ) ~  $, so that 
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This type of biharmonic dissipation is often used by oceanographers (see e.g. Holland 
1978). I ts  utilization is of course open to debate, but it seems to allow a good 
description of the large scales of the flow, with dissipative effects shifted to the cutoff 
scale. It permits an artificial increase in the Reynolds number, and is consistent with 
a widely accepted point of view that, in high-Reynolds-number two-dimensional 
turbulence, the large scales are nearly inviscid, while the small scales dissipate 
vorticity fluctuations a t  a finite rate, as proposed by Batchelor (1969). It is not our 
aim here to investigate the validity of this subgrid-scale approximation for the 
mixing layer. This has been done by Basdevant & Sadourny (1983) in the case of 
homogeneous two-dimensional turbulence. 

We have carried out a second-order, finite-difference numerical simulation of (2.2). 
The Jacobian terms are evaluated using Arakawa’s (1966) formulation which 
conserves total kinetic energy and enstrophy and maintains the property 

J(V2$, $1 = - J($, V2@). 
The dissipative term always lags by one time-step to avoid (linear) numerical 
instability. Using a second-order leapfrog technique for the time differencing, with an 
occasional Euler forward time-stepping to eliminate time splitting of the calculated 
solutions, the numerical calculation finally reduces to solving a Poisson equation. 
This is done using a standard code written by Schwarztrauber & Sweet (1980), which 
allows various boundary conditions. I n  most of the calculations presented below, the 
stream function is defined on a regular array of 2562 grid points with a uniform 
spacing in each direction. 

We consider a ‘temporal ’ mixing layer, i.e. with periodic boundary conditions in 
the x-direction. The calculation is carried out in a square domain of size D, (the 
physical significance of D, will be specified later). On y = +illN, we employ free-slip 
boundary conditions $ = 0 and V2$ = 0. 

The velocity distribution of the basic flow a t  t = 0 is a hyperbolic tangent velocity 
profile u(y) = U tanh2y/6,; x, y and t are made non-dimensional with respect to the 
velocity U and the initial vorticity thickness Si. The vorticity thickness 8(t) a t  any 
time is defined by 6 = 2U/(du/dy),,,, the bar denoting an average in the x-direction. 
The initial ‘Reynolds number’ based on these scales and characterizing the ratio of 
inertial to dissipative forces in (2.2) is Re = U6t/vl  and all the simulations are carried 
out a t  Re = 10000. 

Superimposed upon the basic flow is a white-noise stream-function perturbation of 
small amplitude multiplied by exp ( - y2/6:). This random perturbation injects 
energy into all the longitudinal spatial modes, and should reasonably approximate 
the case of a real mixing layer that  is naturally submitted to a residual turbulence 
having a broadband spectrum. I n  that sense, the following calculations are closer to 
a real mixing layer than calculations with only deterministic perturbations. 

It is known from linear stability analysis (Betchov & Szewczyk 1963) that 
perturbations corresponding to unstable modes will develop, since perturbations a t  
all wavenumbers are initially present. The structures corresponding to the most 
amplified wavenumber (i.e. with the highest amplification rate) will appear first, 
corresponding to what we shall call a ‘fundamental’ mode. The associated most 
unstable wavelength A, given by the theory is approximately A, = 76, (the most 
amplified wavenumber 2n/h, being 0.8892 ql, see Michalke 1964). Thus the side of 
the computational domain has to be taken equal to D, = 7NS, in order to obtain N 
Kelvin-Helmholtz vortices in the streamwise direction : this is what we shall call an 
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‘ N-eddy calculation’. A further deterministic sine perturbation of wavelength A, and 
of small amplitude (modulated by the same Gaussian y-filter) is also superposed on 
the basic flow in order to fix the position (phase) of the Kelvin-Helmholtz eddies on 
the x-axis : without such a deterministic perturbation, the eddies would have, from 
one run to another, a randomly distributed position on this axis. In all the 
calculations that follow, U and the initial vorticity thickness Si will be the same, as 
will the deterministic sine perturbation, and the statistics of the various white-noise 
perturbations considered. The amplitudes of the two initial stream-function 
perturbations (random and deterministic) relative to the stream function of the mean 
flow are The calculations will differ in the number of eddies involved (and so the 
size D, of the domain), the particular realizations of the white noise, and the number 
of grid points. For example, figure 1 (plate 1 )  shows a 4-eddy calculation (resolution 
256,) a t  time t = 15Si/U when the four eddies have appeared. The colours indicate 
the (algebraic) value of the vorticity from the minimum (blue) to the maximum (red). 
The vorticity of the basic inflexional velocity profile is negative; hence the blue 
colour will correspond to regions of high vorticity magnitude 2 U / &  and the red 
colour to the outer irrotational flow. We recall that, from the basic equation (2.2), the 
initial vorticity field is convected by the motion and diffused by viscosity : thus the 
values of the vorticity magnitude a t  any time cannot exceed 2U/6,  (this condition is 
not, however, exactly fulfilled in the calculation, owing to the replacement of the 
viscous harmonic dissipation by a biharmonic dissipation). 

We have checked that the vorticity thickness is of the order of 26, when the 
fundamental eddies have appeared. Note finally that since a subharmonic 
perturbation is also initially present in the white noise, the subharmonic instability 
analysed by Kelly (1967) will grow, resulting generally in a pairing between the 
fundamental vortices (Riley & Metcalfe 1980); we have observed such pairing in 
most of our simulations. 

With this temporal mixing layer we shall later associate a spatial problem with two 
velocities U, and U, such that U, - U, = 2U ; the distance downstream of the splitter 
plate will correspond to it(Ul + Uz).  This is justified only if the streamwise growth of 
the spatial layer over distances of the order of D, is neglected. Nevertheless, the 
main results of the following calculations (temporal case) may prove to be applicable 
in the spatial case also. Figure 2 ( a )  (plate 2) shows an artificial spatial mixing layer 
associated with a calculation involving initially 8 eddies and reconstructed with 15 
vorticity fields, separated by a period of time of 5ai/U. Figure 2 ( b )  shows 9 vorticity 
fields displayed from t = 0 to t = S0Si/U in the 4-eddy calculation: this clearly 
exhibits the appearance of the fundamental structures as well as the first and the 
second pairing. 

2.2. Kinetic energy spectra 
A study of the mixing layer from the point of view of turbulence theories requires the 
calculation of statistical quantities, such as spectra. Since the mixing layer considered 
here is periodic in the x-direction only, the flow can be assumed statistically 
homogeneous only in this direction. Spatial Fourier transforms in the x-direction 
may therefore be considered ; analogous Fourier transforms in the y-direction would 
be less significant physically since there is no periodicity in that direction. We 
consider then the one-dimensional longitudinal spectrum of the streamwise velocity 
component u : 
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FIGURE 1. Vorticity field obtained after 15 characteristic initial turnover times d,/U in a 4-eddy 
calculation (2562 grid points). Colours indicate the vorticity magnitude (blue for the regions of intense 
vorticity 2U/6,, red for the irrotational outer flow). 

LESIEUR, STAQUET, LE ROY & COMTE (Facing p .  514) 
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FIGURE 2. (a) Vorticity field of an artificial spatial mixing layer associated with the 8-eddy calculation 
(256* grid points). This field is obtained with a sequence of 15 vorticity fields separated by a period of 
time of 5 6 , / U  (b) 4-eddy calculation (256* grid points). The vorticity field is shown from t = 0 to 
t = 80. 

LESIEUR, STAQUET, LE ROY & COMTE 
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FIGURE 7. Sensitivity of the flow to the initial white noise (8-eddy calculation, 256’ grid points). The 
vorticity field of the calculation of figure 5(b) is displayed at f = 80 for the two realizations of the initial 
white noise. 

LESIEUR, STAQUET, LE ROY & COMTE 
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where Zi(k,, y) is the longitudinal Fourier transform of the streamwise component u 
a t  a given y :  

u(x,y) exp(-ik,)xdx. (2.4) 

2d d DN corresponds to a y-span on which the logitudinal spectrum is averaged. The 
longitudinal wavenumber k, will be restricted to positive values. One can also 
consider the longitudinal spectrum of the cross-stream velocity component v : 

with 

I f+d 

v(x,y) exp(-ik,)xdx. 

For simplicity, k, will hereinafter be denoted k .  It must be stressed that if the two- 
dimensional turbulence were isotropic (which is obviously not the case for the mixing 
layer), the longitudinal energy spectrum E,(k,) defined by (2.3) would be related to 
the isotropic energy spectrum E ( k )  (integral of half the modal velocity variance 
t16(k)12 in Fourier space over a circular ring of radius z k = lkl) by the relation (see 
e.g. Mory & Hopfinger 1986; or Sommeria 1986) 

Then an inertial-range isotropic energy spectrum E ( k )  - k-" will correspond to a k;" 
longitudinal spectrum E ,  ( kz). 

We present now the time evolution of a 4-eddy calculation in both physical and 
Fourier space: in figure 3 are plotted simultaneously the isovorticity lines of the 
velocity field and the one-dimensional longitudinal spatial energy spectrum E l (  k )  
(defined from (2.3) with d = ill,), for a calculation involving 183, grid points. The 
unit of time is SJU. I n  figure 3(a) the small peak a t  the fundamental wavenumber 
k, = 27c/h, corresponds to the small sine perturbation superposed upon the white 
noise (flat spectrum). At time t = 20 these eddies have been completely formed, and 
give rise to  a peak in the energy spectrum (figure 3b). But nonlinear interactions 
between modes have already distributed the energy across a broad spectrum 
composed of two distinct parts: the harmonics of the fundamental mode k,  emerge 
from the rest of the spectrum, where the pairing modes k,  (first subharmonic 
k, = $k4) and k, (second subharmonic k, = $k2) begin to grow. At time t = 40, the first 
pairing is finished, and the two parts of the spectrum have collapsed into a k-, range 
extending beyond k ,  (figure 3c). At time t = 80, a t  the end of the second pairing, the 
second subharmonic L, = n/2h, has grown and increases the length of the k-,  range 
to 1.5 decades (figure 3d  ). In  fact, the magnitude of the spectral exponent seems then 
to decrease slightly, perhaps towards the -$ value due to spiralling effects 
mentioned by Moffatt (1986). 

We have also calculated in both cases the v-longitudinal energy spectra E , ( k )  : they 
display the same behaviour as E , ( k ) ,  that is, formation of a kP4 range after the first 
pairing. It is found that both u and v r.m.s. velocity fluctuations are of the same 
order in the calculation, which indicates that the turbulence a t  scales smaller than S 
have some characteristics of two-dimensional isotropy. This is a t  variance with 
experimental mixing layers, where v', % wf2 < ur2. 

Figure 4 shows the time evolution of the kinetic energies of modes k,, k ,  and k,. The 
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FIGURE 3. Isovorticity lines and corresponding spatial one-dimensional longitudinal energy 
spectra during the evolution of the mixing layer in a 4-eddy calculation (1832 grid points). (a )  The 
low-k cutoff wavenumber is k, = 2n/4h,. The wavenumber associated to the deterministic sine 
perturbation is k, = 4k,. The flat spectrum corresponds to the white noise. (b)  The fundamental 
mode grows. (c) End of the first pairing. ( d )  End of the second pairing. 

formation of the coherent structures of wavelength A, and the first pairing are, 
respectively, associated with the maxima of El(k4) and E,(k,)  (at t = 15 and 35 
respectively). The first maximum of E , ( k l )  at t = 50 does not, as can be checked by 
the visualization of the vorticity fields in figure 2 (b ) ,  correspond to  the end of the 
second pairing, which actually occurs later, at about t = 75.  This is due, as will be 
seen below, to an effect of the boundaries. The computing time (with this resolution 
of 183, grid points) for the emergence of the coherent structures and the two 
successive pairings is about 15 minutes on a CRAY 1 machine. 

It is tempting to associate with the continuous spectrum we have found the words 
' inertial range ', used for isotropic two-dimensional turbulence. Furthermore the 
mechanism of the shearing of small-scale fluid elements by larger-scale velocity 
gradients, proposed to justify the enstrophy cascade concept (Kraichnan 1967 ; Leith 
1968 ; Batchelor 1969), is certainly acting during the mixing-layer evolution. But the 
difference of our spectral exponent to the - 3 value found in the classical enstrophy 
cascade statistical analysis is still an open question. A further analogy of the mixing 
layer with isotropic two-dimensional turbulence may be found in the large, spatially 
organized ' coherent structures ' of the former, which resemble the coherent structures 
found by McJT7illiams (1984) in the isotropic case. 

The fact that  the two-dimensional mixing layer possesses a broad spatial spectrum 
and is, as will be seen in the next section, extremely sensitive to initial conditions and 
unpredictable, justifies considering it as a special case of two-dimensional turbulence 
(even though it is not isotropic). One might argue that in reality the spectra 
measured experimentally follow a Ic-i law at scales smaller than the vorticity 
thickness (Perry, Chong & Lim 1982; Browand & Ho 1983), and not the laws 
intermediate betwecn IcP4 and k3 found in our simulations. This is due to the 
existence of small-scale three-dimensional turbulence whose Kolmogorov spectrum 
contaminates the ' cohcrent-structures spectrum ' up to the large scales. However, i t  



518 M .  Lesieur, C. Staquet, P. Le Roy and P. Comte 

FIGURE 4. Evolution with time of the kinetic energy of the wavenumbers k ,  = 7i/2h,, Ic, = Zk, 
and k,  = 4k,,  in the calculation of figure 3. 

is likely that the large structures of the real three-dimensional mixing layer will 
retain in their memory the two-dimensional turbulent character exhibited in our 
numerical simulations. Thus, instead of denying the coherent structures the right of 
being called turbulent, we shall say, rather, that the turbulent mixing layer is 
composed of both two-dimensional (the coherent structures) and three-dimensional 
turbulence. Possible mechanisms of interaction between these two classes of 
turbulence will be examined in $4. 

2.3. Growth rate of the layer 
Figure 5 shows the evolution with time of the mean vorticity thickness S(t) ,  averaged 
over two realizations of the flow differing only in the initial white-noise perturbation. 
The calculations are all done with 2562 grid points, and involve 4, 8 and 16 eddies 
(see figures 5a, b ,  c respectively). The size of the computational square is D = D,, 
2 0  = D, and 4 0  = D,, in the cases a, b ,  c, respectively, with the same Si and 
deterministic perturbation in the three cases. Though the spatial resolution (number 
of grid points per fundamental eddy) decreases by a factor of 2 from ( a )  to (b )  and 
from (b )  to (c), the corresponding calculations and visualizations (cf. figures 2 ,5b  and 
5 c )  tend to indicate that the loss of resolution does not change the essential dynamics 
of the layer. The advantage of these 8- and 16-eddy calculations compared with the 
4-eddy case is, as will be seen, the possibility of further pairings without the 
constraining influence of the boundaries : on figure 5 (a )  are indicated the appearance 
of the fundamental eddies a t  t = 15Si/U, the first pairing a t  t = 35Si/U and the 
second pairing a t  t = 75Si/U. The figure also indicates clearly an inhibition of the 
layer spreading a t  about t ,  = 50Si/U, before the end of the second pairing. A t  times 
greater than 150, the smoothing observed on the curve corresponds to a single eddy 
having approximately a circular shape. On figure 5(b ) ,  where the domain width is 
twice as large, t ,  = 90Si/U is subsequent to the second pairing. In figure 5 ( c ) ,  the 
influence of the boundaries starts a t  t ,  z 190Si/U, later than the third pairing. 
Figure 5 (d ), where the three calculations are superposed, summarizes these results 
and clearly indicates this boundary effect in the various calculations, and thus their 
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limit of validity (with respect to the free mixing layer in an infinite domain). It also 
shows that the mean slope of the linear growth in this temporal calculation is of the 
order of 0.10, smaller than the value of 0.17 found in various spatial mixing-layer 
experiments for the spreading constant [(U, + U,)/(U, - U,)] d6/dx (see for example 
Liepmann & Laufer 1947, or Bernal 1981). It is not clear whether this difference is 
ascribable to the numerical techniques used, the two-dimensionality assumption or 
the temporal approximation itself. Notice however that the linear tendency of 0.10 
obtained here comes from an averaging involving three successive pairings, but that 
the calculations show a quicker growth of the vorticity thickness up to  the first 
pairing, more compatible with the spatial natural-mixing-layer experiments. 

From the average tendency displayed above, a layer of thickness 6 doubles its 
thickness in a time w 106/U. Hence, it is possible to determine systematically the 
times at which the various pairings occur more precisely than with visual 
observations: if the fundamental eddies form a t  t ,  = 156,/U (when the vorticity 
thickness is 24) ,  the first pairing will occur a t  about 

t ,  = t ,  + 10(24/U) = 356,/U, 

the second pairing a t  t ,  = t ,  + 1O(4ai/U) = 756,/U, 

and the third pairing at  t ,  = t ,  + 10(8Si/U) = 155Si/U. 

For the associated spatial mixing layer, this would correspond to non-dimensional 
downstream distances [(U,- U,)/(U, + U,)] (x/Si) of 35,75 and 155 for the first, second 
and third pairing, respectively. With the experimental spreading rate of 0.17, and 
taking the same time t ,  = 15Si/U for the formation of the fundamental eddies, one 
would obtain instead distances of 27, 50 and 97 for the three successive pairings. In  
the experiments of Ho & Huang (1982), the times of 28 and 56 are found for the first 
and the second pairing. Note that in figure 5 ( c )  the strong decrease of the vorticity 
thickness a t  the end of the third pairing simply indicates a rotation of the eddies 
about each other. Note also that the times when the influence of the boundaries 
becomes noticeable correspond approximately to the end of the first pairing in the 
4-eddy calculation and to the end of the second pairing in the 8-eddy calculation, 
when in both cases there remain two eddies in the computation domain. It is 
somewhat surprising that these two eddies can merge completely (as can be checked 
using the visualizations from the three cases a,  b and c ) ,  without any further increase 
of the vorticity thickness (which increased regularly during the earlier pairings). We 
believed initially that this earlier saturation was due to the influence of the parallel 
boundaries y = f D. We then performed 8-eddy calculations in a rectangular domain 
of size 2 0  x 4 0  (resolution 256 x 512), which do not show a significant increase in the 
vorticity-thickness amplitude, nor in the saturation time, compared with the 
corresponding calculation in the square domain. The saturation observed is therefore 
due to the periodicity in the x-direction, corresponding to the temporal approxi- 
mation. Notice, however, that an 8-eddy calculation in a rectangular domain of 
size 2 0  x D shows an influence of the parallel boundaries which slow down the 
growth of the vorticity thickness. 

3. The predictability of the mixing layer 
In  general, the predictability problem in fluid dynamics consists in looking at  the 

evolution of the separation between two flows initially very close. In  this section we 
examine the predictability of the two-dimensional mixing layer, by considering two 
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FIGURE 5 ( a  and c). For caption see facing page. 
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FIGURE 5. Evolution with time of the vorticity thickness averaged on two realizations of the flow 
differing only by the initial white-noise realization. Calculations (2562 grid points) are carried out 
in a square domain of size: (a )  0, (6) 2 0  and (c) 41) respectively. Arrows 1,2,3,4 indicate the 
fundamental structures formation and the first, second and third pairing respectively. t ,  marks the 
layer growth inhibition due to the boundary conditions. On ( d )  the three calculations are 
superposed. The straight line shows the slope of the mean linear growth (0.10). 
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velocity fields ul(x, y, t )  and uz(x, y, t )  which evolve independently (in the same square 
domain D,  and with the same boundary conditions as in 92) according to the 
modified two-dimensional Navier-Stokes equation (22), with different initial 
conditions. Let 

E - L  
A - 4([’1(X, y, t ) - u 2 ( X ,  y, t)12) 

(where u1-u2 is the longitudinal component of the velocity difference u,-u,) 
be a spatial average of the longitudinal ‘velocity difference energy ’ (hereinafter 
called error energy) in a rectangular test domain X E  [0, D N ] ,  YE [ - d ,  + d ] ,  with 
2d = D = D,. Also, let 

E,, = +(u:) = __ I” dy sp” u : ( ~ ,  y, t )  dx 
4dDN -d 

(where u1 is the longitudinal component of u,) characterize a mean two-dimensional 
kinetic energy. Such a choice allows the ratio 

(3.3) 
E A r ( t )  = ~ 

E m  

to be zero if u, E u2, and equal to 1 if u, and u2 are completely spatially decorrelated 
in the test domain. Also, we define the longitudinal error spectrum as 

(3.4) 

with 

In the case of isotropic t,wo-dimensional turbulence, the Eddy-Damped Quasi- 
Normal Markovian (EDQNM) theory (or nearly equivalent Test-Field-Model) was 
applied to this statistical predictability problem by Leith & Kraichnan (1972) in the 
case of a stationary enstrophy cascade: they found that, for an error initially 
confined to large wavenumbers (but not in the dissipation range), the error rate r ( t )  
increases exponentially. The same study was carried out by MBtais, Chollet & Lesieur 
(1983) and MBtais & Lesieur (1986), both in the forced and decaying case. They 
showed that the initial large k error was very rapidly transferred to the energy- 
containing eddies of wavenumber ki, owing to non-local interactions in Fourier space. 
In  the problem where the error is initially injected in the ‘energetic’ wavenumbers 
ki(t,), the results suggested that 

r ( t )  - exp [(t-t0)/(7701, (3.6) 

where ro is the initial large-eddy turnover time when the error is injected into the 
system. u is equal to 2.6 in the forced case and to 3.8 in the unforced case. 

This result of exponential error growth is based on statistical closures of two- 
dimensional turbulence whose validity has often been questioned. Furthermore, and 
even if it were valid, its relevance for the mixing layer (which is neither isotropic nor 
even homogeneous) should be treated with caution. It is therefore useful to recover the 
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FIGURE 6. Kinetic energy and error spectra in the mixing layer (4-eddy calculation, 1832 grid 
points). The initial error (white noise) has been superposed (at t = 15) on fundamental structures 
already formed. The error rises progressively in the large scales of the energy spectrum. 

same kind of result (i.e. growth of decorrelation between two initially close 
realizations u1 and u, of the flow) on the basis of the present numerical large-eddy 
simulation. Such a study was initiated by Staquet (1985) by perturbing with white 
noise a 4-eddy mixing layer once the fundamental eddies had been formed, and 
looking at  the difference between the unperturbed and perturbed flow: in such a 
calculation the error rate, after a strong initial decrease, rose exponentially up to a 
value of about 0.05, then saturated for times greater than about 50 (which is 
precisely the time where the 4-eddy layer stops growing, owing to the boundary 
effect). Figure 6 shows the time evolution of the one-dimensional longitudinal error 
spectrum corresponding to Staquet’s (1985) calculation : after a decay due both to 
the viscous dissipation and to the rather unrealistic initial perturbed flow a,, an 
inverse cascade of error through the energy spectrum is observed. This is qualitatively 
similar to that observed by Leith & Kraichnan (1972) or MBtais & Lesieur (1986) in 
the isotropic case. 

Here, we have chosen to make the two fields ul(z, y, t )  and u,(x, y, t )  differ only in 
the initial (at t = 0) white noise, while having the same sine-wave perturbation at  the 
most amplified mode, as in the calculations presented in figure 5: they will then 
develop the fundamental structures a t  the same 2-location, and will thus (at 
t = 15Si/U) differ by an error (due to the initial difference in the white noise) that will 
have had time to adjust to the equations. One can then study the evolution of the 
error (u,-u,) on the basis of a physically acceptable velocity field. As an example, 
figure 7 (plate 3) compares the two realizations of the mixing layer in the calculation 
of figure 5 ( b )  a t  t = 80: significant differences are visible! The vorticity field 2 in 
figure 7 displays an ‘anomalous pairing’, where one eddy which was about to pair 
with its neighbour has suddenly changed its partner and will finally pair with the 
third eddy, as we have checked in the following sequences. 

We then evaluated the error rate in the three cases studied in figure 5, calculating 
the error between the two fields for a square domain of side D, = D, D, = 2 0 ,  and 
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FIGURE 8. Evolution of the relative error rate averaged across the layer from y = -+D to  
y = ++D in the same calculation as in figure 5 .  The error stops increasing in the mean at the same 
time t ,  (50, 90 and 150 respectively) as the layer stops growing. 

D,, = 4D. For each case the error rate is calculated using (3.1), (3.2) and (3.3). This 
allows significant comparisons between the three cases studied : indeed, the initial 
deterministic conditions in the cases D, and D,, are obtained from those for D, by 
a translation of period I) in the x-direction ; as for the initial white-noise perturbation, 
its statistics in the streamwise direction are independent of D, in (3.1) and (3.2). 
Thus, the initial value r ( 0 )  is the same for the three cases, as found in the 
calculations. 

The error rate r ( t ) ,  given by (3.3), is characteristic of the error energy, since E,, 
given by (3.2) remains very close to its initial value, O(U2),  given by the hyperbolic 
tangent velocity profile of the basic flow. r ( t )  is presented on figures 8 and 9. Figure 
8 clearly shows that the saturation of the error occurs a t  the same time t ,  as the 
vorticity thickness stops growing, and is thus an effect of the finiteness of the domain 
and of the longitudinal periodicity : for instance the maximum value of the error rate 
rises from 0.1 to 0.35 when the size of the domain goes from D (4 eddies) to 4 0  
(16 eddies). A calculation carried out in an infinite domain would presumably yield a 
further growth of r ( t )  up to the maximum value of 1.  The fluctuations observed in r 
are due both to the global rotation of the large structures, and to the fact that  only 
the error between two realizations is calculated here, though the statistical 
predictability theory strictly requires an average over an ensemble of pairs of 
realizations : such an averaging would have been too costly, since the calculation of 
a single flow realization up to t = 200Si/U with 2562 grid points already required 2.40 
hours on the Grenoble University FPS 264 computer (and 7.40 hours for 256 x 512 
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FIGURE 9. Same da ta  as in figure 8. in semi-log coordinates: the error starts increasing 
exponentially with a characteristic time of 34 /U (straight line), up  t o t  = 25ai/G.  Afterwards i t  still 
grows exponentially in the  mean, with a characteristic time of 156/Ii, where 6 is the vorticity 
thickness at the beginning of this period. 

points). In  figure 9 the same error rate is shown in semi-log coordinates for the three 
runs, and displays two distinct types of exponential behaviour : up to t = 256,/U, the 
error rate varies as 

r ( t )  = r (0 )  exp - . (g) (3.7) 

This rapid increase corresponds to the formation of the fundamental eddies and the 
beginning of the first pairing, but leads to small values (0.05), because of the 
infinitesimal initial errors in our calculation. Then, after the first pairing (for 
t > to = 40ai/U), a second exponential phase follows, approximately described as 

Extrapolation of this law for an infinite domain would yield r ( t )  = 1 at t = 240Si/U, 
and hence a complete decorrelation. Notice also in figure 9 a drastic change in the 
evolution of the error, which occurs during the first pairing but keeps on increasing 
thereafter until it  saturates due to the x-periodicity : practically, one can say that the 
error grows as far as the layer thickness (measured by the vorticity thickness or the 
momentum thickness) increases. 

Thus the temporal mixing layer excited initially with the aid of a tiny white-noise 
perturbation proves to be unpredictable, even though it is made of spatially coherent 
structures. This result indicates that the concepts of unpredictability and coherence 
are far from being contradictory. 
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4. The interaction between two- and three-dimensional turbulence 
4.1. From two- to three-dimensional turbulence 

Three-dimensional spanwise instabilities developing on Kelvin-Helmholtz billows 
have been studied experimentally by Bernal (1981), Jimenez (1983), Jimenez, 
Cogollos & Bernal (1985) or Lasheras, Cho & Maxworthy (1986) for instance. The 
results show essentially the development of a wave-like oscillation of the billows in 
the spanwise direction, with longitudinal pairs of counter-rotating vortices 
developing on the crests. Pierrehumbert & Widnall (1982) performed a theoretical 
linear stability analysis on Stuart vortices, which showed in particular that a 
spanwise sine-wave perturbation amplifies, with a most unstable wavelength of the 
order of $Aa. Corcos & Lin (1984) generalized the latter study to an arbitrary time- 
evolving basic flow : they found basically the same result, and stressed also the role 
of the two-dimensional subharmonic mode (responsible for the pairing) as an 
inhibitor of the three-dimensionality development. Metcalfe et al. (1987) performed 
a three-dimensional direct numerical simulation showing the appearance of the 
longitudinal counter-rotating vortices, and confirming Corcos & Lin’s predictions 
concerning the role of the subharmonic mode. 

Here we shall develop a formalism showing an equivalence between a one-mode 
spanwise truncation of the three-dimensional mixing layer and the two-dimensional 
predictability problem studied above. Consider the following flow, where the velocity 
and pressure fields u(x ,  t )  and p ( x ,  t )  are expanded as 

U(X, y, 2 ,  t )  = U,,(Z, y, t )  + d 2  u3D(z7 yt t )  sin Ic, 2, 

p ( X >  y, z ,  t ,  = P 2 D ( x t  y, t, + ‘d2p3D(Z, y$ t ,  sin 

(4.1) 

(4.2) z ,  

where u2, and u,, are parallel to the (x, yj-plane and non-divergent. These two fields 
represent, respectively, the basic two-dimensional flow and the amplitude of the 
three-dimensional perturbation ; k,  is a constant. A schematic three-dimensional 
representation of the vorticity field is given in figure 10. Such a velocity field is non- 
divergent, since its z-component is zero. This decomposition parallels the analysis 
leading to the ‘ barotropic ’ and ‘ baroclinic ’ spectral two-mode decomposition of the 
quasi-geostrophic equation for rapidly rotating fluids (see e.g. Hoyer & Sadourny 
1982), the latter being the equivalent of the quasi-geostrophic two-layer model (see 
e.g. Pedlosky 1979 for details). The essence of the one-mode spanwise truncation of 
the three-dimensional Navier-Stokes equation is to assume that the form (4.1), (4.2) 
is conserved with time, and to discard the fluctuations in the spanwise mode 2k, 
which are produced by nonlinear interactions. Consider the three-dimensional 
Navier-Stokes equation (with constant density) 

au 
-+u-wu = -Vp+vV2u, 
at 

in which we substitute the particular expansions (4.1) and (4.2). One obtains 

+ uZD - VU,, + 2 sin2 k, u ~ ~ -  VU,, & 
at 

(4.31 
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FIGURE 10. Schematic view of a three-dimensional instability of wave length 2 4 k ,  developing 
on a coherent structure. 

Noticing that 2 sin2 E ,  z = 1 - cos 2k, x ,  eliminating the cos 2k, z term (which cor- 
responds to the truncation), we obtain after identification of the sin k, z terms 

+ u 2 D  ' V u 2 D  + L(3D ' V u 3 D  = - Qp2D + v v 2 u z D ,  
& 

at 

+ UZD * v u 3 D  -k u3, * V u 2 D  = - v p 3 D  + v v 2 u 3 D .  
au,, 

at 

(4.5) 

(4.6) 

(In (4.6), the - term (arising in (4.4)) has been neglected in the dissipation 
term; we think this term would have only a negligible influence on the following 
results). 

These equations present similarities with one of the cases (the 'coupled case') 
studied by Corcos & Lin (1984, see their equations 2 .2b  and 2.3), but in our model 
the V operator is two-dimensional. Now let 

u, (x ,y>t)  = u2D+u3D,  u2(x3y>t) = uZD--U,D (4.7) 

and similarly for p ,  and p,. It is easy to show from (4.5) and (4.6) that  u, and u, 
both satisfy independent two-dimensional Navier-Stokes equations, with the same 
boundary conditions as u(x, y ,  z , t )  for y = & co. Therefore, the growth of this 
particular three-dimensional perturbation, if initially of random amplitude, can be 
expressed in terms of the predictability problem studied in the preceding section. 
Conversely, the study of t (u ,  -uz)  = u3, in the predictability problem will give access 
to the three-dimensional perturbation amplitude. E,, given by (3.1), can then be 
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easily identified with the mean kinetic energy of the three-dimensional perturbation, 
avwaged over a wavelength 2nlk, in the spanwise direction. A value of 1 for r ( t )  in 
(3.3) will then mean complete three-dimensionalization. 

Such an analysis is of course subject to criticism, since there is no lateral velocity 
in the velocity field. The discarding of the cos2k,x term certainly eliminates some 
important three-dimensional characteristics of the flow, such as the existence of 
secondary streamwise vorticcs (Hernal 1981) or of small-scale three-dimensional 
turbulence. It has to be stressed that the streamwise secondary vortices found 
experimentally might just develop as a topological consequence of the spanwise 
oscillation of the Kelvin-Helmholtz billow described above, and hence a description 
of thc flow focusing on only the spanwise oscillation might be of some relevance. On 
the other hand, the same truncation applied to the quasi-geostrophic potential 
vorticity equation yields valuable results regarding the baroclinie instability, which 
i s  nothing more than the growth of three-dimensionality in a quasi-two-dimensional 
eddy (with vertical axis) of the type presented in figure 10. But, as stressed by a 
referee, the rapid rotation in the quasi-geontrophic theory inight eliminate precisely 
those stretching and tilting effects that we are studying, and render the 
decomposition valid in this case. At any rate, the present one-mode spanwise 
expansion provides a systematic formalism relating a wave-like tilting of the 
Kelvin-Helmholtz billows to the two-dimensional predictability. This gives a 
mathematical justification to, and sheds a new light on, an analogy already proposed 
by Lesieur (1983) and Staquet, MBtais & Lesieur (1985), and discussed from the point 
of view of the statistical theory of turbulence by MBtais & Lesieur (1986). within this 
formalism, the two fields u, and u, were two cross-sections of the flow in the (x, y)- 
plane at  two distinct spanwise locations, which were assumed to  be decorrelated. 
This could of course be valid only for spanwise wavelengths much longer than the 
vor ti ci ty thickness. 

Owing to this mechanism, and using the predictability results of $3,  we suggest 
that in an infinite domain (for a temporal layer), or in a spatial layer (where there is 
no periodicity constraint in the spatial direction), the initially quasi-two-dimensional 
layer would return exponentially to three-dimensionality. An estimate of the 
characteristic time of three-dimensionalization for a mixing layer of vorticity 
thickness d(to), with Kelvin-Helmholtz billows formed and perturbed at  t = to by a 
three-dimensional perturbation of relative kinetic energy r( to) ,  is given by (3.8) with 

W,) r(to) = 1.  This yields 
!I!;,, = 15 ~ In r(t0)-l 

U 

Here, three-dimensionality does not mean u. priori loss of spanwise coherence : but it 
is conceivable that once a Kelvin-Helmholtz billow has developed strong spanwise 
distortions, it may break down into developed three-dimensional turbulence with a 
leu% kinetic energy spectrum. It has to be stressed that our particular two-mode 
analysis has no preferred spanwise wavelength since all the spanwise perturbations 
have the same amplification rate, regardless of k,. This is a further difference with 
respect to the analysis of Pierrehumbert &, Widnall (1982) or Corcos &, Lin (1984). 

Experimentally, the three-dimensionalization of the layer is particularly 
spectacular in the initial stage of the evolution downstream of the splitter plate : the 
non-dimensional ‘transition ’ distance D,, found is (Jimenez 1983) 

U - U  D,, la- - 60. 
ci, + u, 81 (4.9) 
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With the initial value r ( 0 )  = 1.7 x taken in our calculations, the three- 
dimensionalization distance is of the order of 240, as already stressed. But it is clear 
from figure 9 that  an initial value r (0)  = 1.2 x would yield r ( t )  = 1 at t = 80, 
closer to  the value (4.9). It is thus difficult to predict theoretically the transition 
distance in the absence of experimental data concerning the amplitude of the three- 
dimensional turbulence immediately downstream of the splitter plate. It might be 
that the abrupt transition between (3.7) and (3.8) corresponds to the catastrophic 
occurrence of three-dimensionalization found experimentally in the initial stage. As 
for the law (4.8), it will apply in the 'developed region', downstream of Dtr. 

Another important question concerns the role played by the two-dimensional 
subharmonic instability in the growth of spanwise instabilities: in our model, the 
mean three-dimensional kinetic energy still increases during the successive pairings, 
though much slower than during the initial stage (up to the first pairing). On the 
other hand, calculations of Corcos & Lin (1984) and Metcalfe et al. (1987) show a 
saturation in the growth of the three-dimensional kinetic energy, associated with the 
existence of a subharmonic pairing mode. But these calculations consider 
deterministic initial perturbations (contrary to our white-noise perturbations), 
consider only the first pairing, and might not involve domains and times large 
enough to eliminate the possibility of a further growth of three-dimensionality, after 
a slowing down during the first pairing. It seems, therefore, that three-dimensional 
calculations involving several pairings are needed in order to resolve this important 
question. 

4.2. From three- to two-dimensional turbulence 
Let us consider now the developed region of the mixing layer (after the transition to 
three-dimensional turbulence) : several experiments (see e.g. Browand & Troutt 
1980) have confirmed that the large coherent structures are still present far down- 
stream, hidden behind the agitation of small-scale three-dimensional turbulence. 
We then assume that one of these large structures is perturbed by a spanwise 
oscillation and will, from the results of the last section, breakdown into three- 
dimensional turbulence. We now have a three-dimensional turbulent layer 
superposed upon a mean inflexional shear of vorticity thickness 6. For instance, as 
already mentioned, the longitudinal spectra determined by Browand & Ho (1983) in 
the central region of a high-Reynolds-number mixing layer show a nice k-5 
Kolmogorov cascade beyond the wavenumber 6-1 characteristic of the large scales, 
indicating that the mixing layer could be a superposition of coherent structures and 
of three-dimensional turbulence not far from isotropy. We assume then that the 
action of three-dimensional turbulence on the large coherent scales that  are about to 
form can be modelled with the aid of an eddy viscosity vt, and that during the stage 
corresponding to the presence of small-scale turbulence superposed on the large-scale 
inflexional shear, one can write the equation 

(4.10) 

where $(x, y ,  t )  is a stream function representing thc: two-dimensional large scales 
(mean shear + a two-dimensional broadband spectrum perturbation $(x, y, t ) ) .  The 
value of vt can be evaluated either by measuring experimentally the Reynolds 
stresses (Wygnanski & Fielder 1970). or by recourse to the concept of eddy viscosity 
in spectral space introduced by Kraichnan (1976) and used for large-eddy simulation 
by Chollet & Lesieur (1981) (see Lesieur 1987 for a review). In the latter case, and 
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when working in Fourier space, this eddy viscosity can be expressed in terms of the 
kinetic energy spectrum a t  the cutoff wavenumber k c ,  and written 

vt = 0.2s[F] E(k,)  . 
(4.11) 

For the mixing layer, we decide quite arbitrarily to consider that the large scales 
extend up to Ic,  = 2SP1, and still assume that the action of modes k > Ic,  upon the 
large scales correspond to the eddy viscosity (4.2) determined with the aid of energy 
spectra measured in the experiments (Lesieur 1983). This yields 

- = 30 - 40 
6U 

Vt 
(4.12) 

for the ‘turbulent Reynolds number’. Then the perturbation $, which can initially 
be provided by the three-dimensional turbulence itself, will satisfy the Orr- 
Sommerfeld equation (but with the eddy viscosity replacing the molecular viscosity) 
and the most amplified coherent structure A, = 76 will appear in a characteristic 
time w 10 - 156/U: the coherent structure will then emerge from the smaller-scale 
turbulence. A similar behaviour has been observed experimentally (Browand & Ho 
1983) when a mixing layer is forced across a grid in a wind tunnel. The role of the 
mean flow instability in the formation of the coherent structures had previously been 
pointed out by Taneda (1981). 

Hence we suggest that  the evolution of the mixing layer in the developed region 
and in an infinite domain is characterized by a cyclic exchange of energy between 
two- and three-dimensional turbulence : starting from a two-dimensional ‘ coherent 
structure ’ of vorticity thickness So, spanwise decorrelation develops exponentially 
until i t  breaks down into three-dimensional turbulence and the coherence is lost. The 
characteristic time for such a destruction is still given by (4.8), but r(t,) is no longer 
very small, since the three-dimensional perturbation corresponds now to developed 
three-dimensional turbulence. Thus the characteristic time of destruction will be of 
the order of 15S(t,)/U. Then the ambient mean inflexional shear acts (through linear 
instability mechanisms) to build a new coherent structure. This is certainly an 
oversimplified view, compared with the complexity of various instabilities con- 
tributing to the three-dimensionalization or the coherence of the mixing layer, but 
it may nevertheless shed some light on the persistence far downstream of two- 
dimensional coherent structures. Let us remark finally that both mechanisms could 
occur simultaneously ; as noted by J. J. Riley (1987, private communication). 

5.  Conclusion 
This paper has studied the large coherent structures of a temporal mixing layer 

from a two-dimensional point of view. Large-eddy numerical simulations have shown 
that these structures, if excited initially by a white-noise perturbation superposed on 
a hyperbolic tangent basic velocity profile, are turbulent in the following sense : they 
are extremely sensitive to initial conditions (‘unpredictable ’), and they develop, 
after the first pairing, a broadband energy spectrum of slope intermediate between 
kP4 and k-3. The mixing-layer vorticity-thickness growth is interrupted when the last 
two eddies merge, owing to the periodicity in the x-direction of the temporal 
approximation. 

The predictability of the two-dimensional mixing layer has been investigated by 
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looking in particular at the growth of the error energy between two fields forced by 
the same perturbation at  the fundamental mode, but differing initially in the white- 
noise perturbation realization. The error has been shown to grow exponentially, 
and saturates together with the vorticity thickness, owing to the same periodicity 
effect. 

It has also been shown how a one-mode spanwise spectral expansion of the three- 
dimensional mixing layer is equivalent to a two-dimensional predictability problem, 
the kinetic energy of the wave-like spanwise perturbation being associated with the 
error energy betwen two independent two-dimensional fields. 

Thus, the exponential loss of predictability mentioned above has been used to infer 
in the mixing layer an exponential growth of three-dimensionality induced by the 
particular spanwise perturbation considered above. 

We have also proposed that, if the layer returns to three-dimensionality, a new 
coherent structure will then form, owing to the instability of the mean inflexional 
shear, upon which the three-dimensional turbulence would simply act as an eddy 
viscosity. Since the times for the destruction of the coherent structure depend 
logarithmically upon the amplitude of the initial perturbations, the exchange 
between ‘ coherence ’ (two-dimensional turbulence) and three-dimensional turbulence 
will be intermittent when the perturbations are randomly distributed in space. 

A new image of the turbulent mixing layer can be proposed from these results : the 
mixing layer is a superposition of two-dimensional turbulence (the coherent 
structures, of spectrum intermediate between k-3 and K4), and three-dimensional 
turbulence close to isotropy and following approximately the Kolmogorov k-g law. 
These two states under which turbulence is condensed interact in two ways : first the 
exponential spanwise distortion of the Kelvin-Helmholtz billows cascades into 
small-scale three-dimensional turbulence. Secondly the linear instability of the mean 
inflexional shear, on which the three-dimensional turbulence serves both as an eddy 
viscosity and a perturbation, recreates two-dimensional Kelvin-Helmholtz billows. 

A last point concerns the application of these concepts to other flows: some of 
the conclusions relating to three-dimensional instability growth may be applicable 
to large-Reynolds-number flows where large ‘ coherent ’ quasi-two-dimensional 
structures tend to be created by some instability mechanism, and compete with the 
development of three-dimensional turbulence, e.g. for wakes or jets, thermal 
convective flows a t  high Rayleigh numbers, and rotating flows such as 
Couette-Taylor flow or turbulence in a rotating tank (Hopfinger, Browand & Gagne 
1982). I n  the last case, the analysis carried out in 94 for an eddy with axis parallel 
to the axis of solid-body rotation D in fact yields the same set of equations as (4.5) 
and (4.6), with Coriolis force contributions ( - 2 0  x u,, and - 2 0  x uQD respectively) 
which are irrotational (provided SZ is a constant) and can therefore be included in the 
pressure terms. The same ideas of continuous destruction and recreation of the large 
organized structures may hold also for three-dimensional coherent structures, such 
as the ‘hairpin ’ or ‘horseshoe ’ vortices found in turbulent boundary layers (Kline 
et al. 1967 ; Taneda 1981 ; Head & Bandyopadhyay 1981 ; Moin & Kim 1982 ; Perry & 
Chong 1982) ; indeed they could result from the development of a sort of spanwise 
instability developing on two-dimensional eddies of a Tollmien-Schlichting type. 
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